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Abstract. A new approach based on the Embedded Atom Method is applied to model the structure of
grain boundaries in nanostructured powders. We choose a set of EAM parameters reproducing bcc as well
as fcc structures. A Monte-Carlo scheme, namely various modifications of the well established simulated
annealing/Metropolis algorithm, is used to obtain realistic structures of twisted and tilted double and triple
grain boundaries as a function of the relative disorientation of the grains. We devise a completely general
way to take into account the structure of the grains far from the interface as well as to constraint the
relative orientation of the grains, without using periodic boundaries conditions, which would restrict the
simulation to certain relative twist or tilt angles for the grains. A few parameters having to be assumed, we
compare two methods to model the structure of the grain boundaries. As these two methods, depending on
different parameters, lead to similar results, we therefore reduce the number of parameters to be assumed.
Results indicate a new configuration which is closer to the bcc structure than the fcc one in the case of
iron nanopowders.

PACS. 61.46.+w Nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 05.10.Ln
Monte Carlo methods – 61.72.Mn Grain and twin boundaries

1 Introduction

The solid-state processing technique of high energy ball
milling involves successive fragmentation and welding
stages of a microcrystalline powder into a random assem-
bly of nanocrystalline grains, giving rise to the so-called
nanostructured materials [1]. This non-equilibrium state
is obviously not the lowest energy one as it would be a
quasi-infinite perfectly crystalline bulk at room tempera-
ture and pressure. In those conditions, however, the nanos-
tructured state is metastable on macroscopic time scales.
The simulation of the milling process thus has to address
very different time and length scales: mechanical shocks
between either particles or particles and ball or vials take
place at about a millisecond time scale, while the reorgani-
zation of the crystalline structures occurs on a picosecond
time scale. Direct molecular dynamics simulation can be
thus ruled out to model the atomic microstructure.

Similar problems arise about the size of the systems:
they present disordered interfaces or grain boundaries on
a nanometer scale (up to 20 nm), when the grains them-
selves can be almost crystalline on a much larger scale.
The atomic fraction localised in those grain boundaries
which is dependent on the conditions of synthesis, in-
creases when either their thickness increases or/and the
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grain size decreases. Because the grain boundaries signif-
icantly influence some physical properties in nanostruc-
tured materials, for example thermal and electrical con-
ductivity, coercive field and magnetic losses, the modelling
of their structure is thus an important task. The presence
of grain boundaries can be evidenced from either diffrac-
tion experiments, spectroscopic local probe techniques or
magnetic measurements [2–4] or a combination of these
techniques, and observed by high resolution transmission
electronic microscopy. In the case of Mössbauer spectrom-
etry, it remains a quite difficult task [5]. But in previous
studies [6], it has clearly indicated the existence of two
components of comparable volume fraction with different
magnetic behaviours, as in nanostructured metallic [7] and
fluoride [8,9] powders. But let us note that the structure of
grain boundaries was controversially debated for example
in the case of milled iron nanostructured powders [10–13].
Because the atomic structure modelling of grain bound-
aries remains an open question, further approaches based
on computer calculations have thus to be proposed.

In the present study, we restrict ourselves to the
following system: a double or triple grain boundary con-
strained in between grains which consist of pure perfectly
crystalline bcc iron of a 10 nanometer size on average,
as experimentally measured in our metallic iron powders
prepared by high energy ball milling [14,15]. Eventual
dislocations or stresses inside the crystalline grains are
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supposed to have relaxed (or the grains to have been
slightly annealed) and are then neglected.

We then have to address the atomic modelling of such a
system in an out of equilibrium metastable state, induced
by the mismatch of the individual crystalline structure of
the grains far from the interfaces.

It is also important to emphasize that great care has to
be taken in the simulations: indeed, the well established
classical simulation methods, either molecular dynamics
or Monte-Carlo simulated annealing, quickly lead to the
lowest energy state, namely the infinite crystalline bulk.
Various assumptions have then to be made. As in previous
works [16,17] molecular dynamics simulations were at first
considered to describe a shock in between two crystalline
grains; but such an approach involves a huge numerical
cost due to the computation of the different forces, as well
as a high number of parameters to be assumed such as the
initial relative speed of the crystalline blocks, the time to
stop the simulation in order to reach a physically realistic
state or an annealing law and a constraint on the temper-
ature in order not to reach a gaseous system.

Those constraints led us to prefer a Monte-Carlo sim-
ulation with the Metropolis algorithm which does require
less parameters and assumptions. Besides, we have de-
veloped two different ways to model the interface whose
assumptions and parameters are independent, the results
of which are very close and do not change when the non
fundamental parameters (such as those of the potential)
are varied in a reasonable range.

2 Theoretical aspects

We selected the well-established Embedded Atom Method
(EAM) to compute the total energy of the system consid-
ered.

The first difficulty in the use of this approach is the
choice of the potential functions. Several many-body in-
teratomic potentials for Fe have been reported in the
literature [18–22]. In a previous study [23], Simonelli
and coworkers have developed an interatomic poten-
tial for Fe to test various point defects. These poten-
tials give the correct elastic constants of iron. Recently,
Byeong et al. [24,25] have however shown that the MEAM
(modified embedded atom method) exhibits some criti-
cal short-comings. For instance the surface energy of the
(111) surface computed on many bcc metals is smaller
than the one of the (100) surface. This is in contradic-
tion with experimental results [26,27]. A more general
discussion of many-body interatomic potentials for bcc
transition metals is reported also by Pasianot and cowork-
ers [28].

In our study, we used the Yang and Johnson
parametrization [29], which gives correct structure stabil-
ity and good results for surface energies and vacancy for-
mation energy. In addition the results showed that these
potentials are able to describe accurately both bcc and
fcc structures, which can be crucial for an accurate de-
scription of grain boundaries. We could reproduce, using
periodic boundary conditions and a standard Metropolis

simulated annealing method, the bcc and fcc structures of
bulk Fe.

3 Computational aspects

Let us first choose a simulation box large enough to con-
tain several nanometric crystalline grains in order to get
relevant structural information on both the interfacial and
the granular parts of such systems. Before annealing with
the Metropolis algorithm, we have to establish initial con-
ditions leading to a physically plausible result.

3.1 Initial condition

As in other works [30–32] we consider several nucleation
centres inside the simulation box. For each centre, Euler
angles can be chosen in order to orient the relative crystal-
lographic axes of the nanocrystallites. This arrangement
aims to reproduce the nanostructured state. The next step
is, by adding atoms to the system, to make the crystal-
lites grow in all directions until the structure reaches a
certain limit (with a rather large, arbitrary total num-
ber of atoms, as will be discussed further below). This
limit is given by the Voronöı cell conditions [33,34]. All
the points (atoms) belonging to a Voronöı cell are closer
from the nucleation centre included in this cell than to all
other nucleation centres. These steps lead to a polycrys-
talline structure yet unusable for annealing, since some of
the atoms are too close from each other; the resulting un-
physical excess energy gives rise to numerical unstabilities.
In order to get more realistic grain boundaries, we then
apply two different relaxation methods, labelled I and II.

3.2 Method I

We remove from the system all atoms which are closer
to the grain boundaries than a certain distance d. This
results in an empty zone between crystallites. The system
is then annealed by a modified Metropolis algorithm where
not only the atoms but the whole grains are moved, as will
be detailed below.

3.3 Method II

We first remove from the simulation box the atoms leading
to an energy contribution exceeding a certain threshold.
This choice is somewhat arbitrary, but as will be shown
later, it can be a posteriori validated from the results.

3.4 Monte Carlo simulations–constraints

We use the Monte-Carlo simulated annealing scheme with
the Metropolis algorithm [35], the initial temperature
being fixed at 300 K and then brought to a low temper-
ature (for example 10 K) as in other methods employ-
ing a quenching process [36]. As previously discussed, this
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scheme actually works so well that it rapidly leads to the
lowest free energy configuration for the system, namely a
quasi-infinite piece of bulk if periodic conditions are used
and the size of the simulation box is chosen to reproduce
atmospheric pressure, and a large metallic cluster if those
periodic conditions are removed [37]. In practice, this is
actually observed in the samples if one waits long enough
at ambient temperature (probably a few years at 300 K),
or if one gently anneals the systems, say, at about 600 K.
The simulation method has then to introduce constraints
in order to describe a metastable, non-equilibrium state
however stable at extremely long microscopic time scales.

Concerning periodic boundary conditions, one could
find certain commensurate tilt and twist angles of two
grains compatible with a certain range of simulation box
sizes, but on the one hand this approach becomes math-
ematically very complicated in three dimensions [38] (not
mentioning the problem of triple grain boundaries), and
on the other hand we want to simulate arbitrarily oriented
grain boundaries.

We therefore use the following modification to the
scheme: the probability for a given atom to be subjected
to the Metropolis algorithm is given by P (x) = e−αx,
where x is the distance from the considered atom to the
nearest interface and α is an adjustable parameter chosen
here to vary from 0.5 to 2 in Å−1. This probability law
is simulated by comparing to a random number between
0 and 1.

The choice of law P (x) is therefore not fortuitous, as
it helps obtaining a system with a smooth varying inter-
face. It can be seen as an elegant way to enforce arbitrary
constraints for the system considered. Since at infinite
distance we have crystallites with perfect atomic lattices,
however with arbitrary relative orientations to which the
system will tend to adapt, we therefore get a way to de-
scribe any grain boundaries in three dimensions, without
recurring to periodic boundaries conditions, and still with
a quasi-infinite total number of atoms.

So, we can thus consider that we simulate a very large
cluster of iron atoms consisting of two or three grains (with
bcc lattice), linked each other by a grain boundary. Only
the atomic structure close to the interface (as previously
defined) is mainly annealed. However, the atoms located
far from the interface have a low but non-zero probabil-
ity to be moved, in order to describe the metastability
on microscopic time scales. A further modification of the
Monte-Carlo simulated annealing scheme is used in the
first method to construct the initial condition (Method I).
In this method previously developed to model a collision
in between nuclei, atoms, molecules or clusters [35], we
simulate a shock in between grains and the establishment
of a boundary to accommodate the mismatch in between
the relative crystalline structures of the grains. We modify
the scheme by considering a Metropolis step acting on the
whole grains relative to their common centre of gravity by
applying the function of probability according to two dif-
ferent manners at a constant temperature T = 100 K, re-
laxing simultaneously the system during the displacement
of the blocks or bringing closer the blocks first, then relax-

Fig. 1. Comparison of radial distribution functions obtained
by taking the histogram of the atomic positions within the in-
terface and within ten atomic layers from the interface (dashed
line) for one value of parameter α in method II a), in compar-
ison to method I b).

ing the system. The net effect is thus to bring the grains
together (corresponding to a lowering of the total energy),
the process stopping when the grains are in optimal con-
tact, with at the same time an annealing of the struc-
ture of the grains, leading quickly to a metastable, non-
equilibrium state of the system. Because of the similarity
of the results of these techniques of simulation, we present
only the results obtained after a shift of the blocks fol-
lowed by relaxation. For the second method (Method II),
the system is heated rapidly at T = 2000 K, that is above
the melting point of the iron. It allows to simulate thus
the energy brought to the system during the shock and
to introduce some disorder. Then, the system is quenched
from T = 2000 to T = 100 K.

4 Results and discussion

The following results have been obtained after conver-
gence of the Metropolis annealing procedure, in a box
much smaller than the total size of the system in order
to avoid finite size and surface effects.

We present in Figure 1, results obtained with a box
containing two grains with the two methods for one value
of parameter α. In both methods, the relaxation is sub-
jected to the law of transition probability of Boltzmann
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Fig. 2. Angular distribution histogram obtained by taking
the histogram of the atomic positions within the interface and
within the grain in method I.

type and 50000 Monte-Carlo steps were performed on a
sample containing 65800 atoms, the two grains being dis-
oriented of Euler angles of 5.6, 13, and 22.5 degrees.

As is shown in Figure 1, we reproduce the bcc struc-
ture of the grains, as well from the radial distribution his-
togram computed far from the interface. However, in the
grain boundaries, we observe that the characteristic peaks
of the radial distribution function of the grain boundary
become wider indicating various types of atomic environ-
ment. Note that the interface area was selected from 95%
of the excess of energy of the whole system. Those results
can be interpreted as a kind of a local disorder induced
by the excess of energy due to the mismatch of the grains
enforced by the constraints. The mismatch of the grains
induces disorder at the interface.

To elucidate the presence of the disordered structure
in the grain boundaries, we determined the angular distri-
bution histogram of the system (see Fig. 2). We observe on
the curve of the grain boundaries a widening and the ap-
pearance of two peaks around 55◦ and 125◦. In agreement
with Figure 1, the angular distribution histogram reveals
the presence of short-range order with distorted entities.
Contrarily to the studies performed on pure iron obtained
by high energy ball milling by Hernando et al. [10,39], the
present simulation results indicate that the structure of
the grain boundary can not be described with a structure
of the fcc type structure because of the absence of the 90◦
peak although the EAM potential is able in principle to
reproduce this structure.

We have used various reasonable values of parameter
α range of the exponential) in order to emphasize its small
influence on the result, as long as α is not too small (less
than two inverse atomic lattice parameters). Indeed, such
a situation which would result in too sharp an interface
and therefore without relaxation of the outer core of the
grains due to the interface, leading to too large an excess
of energy.

Fig. 3. Evolution of the density and the excess of energy per
atom versus the distance with different values of parameter α
using method I.

Table 1. Thickness of the grain boundaries obtained after
relaxing of the system.

α (Å−1) 2 1 1/2
Thickness 0.8 0.8 1

(nm)

After obtaining the angular and radial distribution his-
togram of the interfacial zone, we calculated the excess of
energy and the density of the system on intervals of con-
stant thickness, along to the normal direction of the inter-
face [40–42]. In Figure 3, we note that the excess of energy
curves have a symmetrical, centred maximum, indicating
the loss of crystallinity within the grain boundaries. In
parallel, it should be noted that this loss of crystallinity is
accompanied by a density reduction of approximately 10%
inside the grain boundary, in agreement with a previous
study [42].

In addition we have used these two curves to estimate
the thickness of the grain boundaries by measuring the
half-height width versus α. The values obtained are sum-
marised in Table 1: it can be noted that the obtained value
of about 0.8 nm to 1 nm is quite small. In addition, it per-
fectly agrees with the experimental value of 0.7–0.8 nm,
i.e. 2–3 atomic layers, as extrapolated from X-ray diffrac-
tion [14,15].

Figure 4 shows the evolution of the coordination num-
ber in the grain boundaries. The cut-off for the first neigh-
bour computation was chosen from the first peak of the ra-
dial distribution histogram located at a distance of 2.65 Å,
atributed to the first neighbours. The interface area was
selected from 95% of the excess of energy in order not to
overestimate the contribution of the crystalline part (eight
neighbours), for instance at ± 3.5 Å.
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Fig. 4. Distribution of the number of neighbour after the re-
leasing of the system within method I.

As we can notice, the frequency of the numbers of
neighbours lower than 2 and higher than 8 is weak but
remains greater than zero. This frequency would be mod-
ulated a little if we change the cut-off in the nearest neigh-
bour search. On this example, the average value of the
number of neighbours is 5.7.

Besides, it can be seen in Figures 1 and 3 that the
choice of methods to establish the initial conditions (Meth-
ods I and II) have no significant effect on the resulting
structure of the interface. As previously stated, one can
therefore consider the results free either from the parame-
ter α, the probability of whole block motion versus single
atom motion, or from the method used to construct the
initial condition and to constraint the system. We further
emphasize the flexibility of the simulation methods dis-
cussed here by presenting on the results obtained for triple
grain boundaries. Those results are close to the ones ob-
tained for two grains, with a further washing out of the
peaks due to additional excess of energy due to the pres-
ence of the two grains. The method could be readily ex-
panded to a system containing a large number of grains.

5 Conclusions and perspectives

We have presented a new method to compute the struc-
ture of nanoscale grain boundaries. The method, based
on simple modifications of the Metropolis algorithm in-
spired from previous work in nuclear or cluster collisions,
allows one to address double and triple grain boundaries
with arbitrary relative disorientations without recurring
to periodic boundaries conditions. The number of simula-
tion parameters is also reduced by comparing the results
of two methods to establish the initial condition of the
simulation, and to end up with a much simpler scheme
than molecular dynamics, which would require several fur-
ther assumptions, involving thus a higher numerical cost.
It is also important to emphasize that we restricted our

present discussion on the basis of one relative disorien-
tation, since some arbitrary ones were tested, giving rise
to similar results (radial and angular distribution func-
tions). Nevertheless, particular disorientations were also
considered: in the case of Euler angles of (0,0,0), a pure
crystalline structure is obviously obtained after applying
present methods.

The method could then be applied to a system with a
large number of grains, or quasi-statically study fracture
by moving the boundaries grains slowly apart. It is to be
noted that the methods we present here could also be ap-
plied to the modelling of epitaxial heterostructures around
the interfaces, surface reconstruction, and also crystalline
structure containing defects (impurities, vacancies) to a
better understanding of their mutual effects.

The structure of the grain boundaries obtained with
these methods can be described like a slightly disor-
dered zone with a small thickness within two or several
nanocrystals of bcc structure. Indeed, the analysis of the
distribution of the number of neighbours shows the exis-
tence of a disorder and the angular distribution can not
be assigned to a particular structure.

The non-equilibrium distribution of atomic positions
resulting from our computations could also be used as
input for other programs to compute magnetic or electric
properties of the system. We also decided to study iron
given the readiness of experimental results obtained with
Mössbauer spectrometry, but the method could be applied
to simpler systems such as ionic nanostructures or even
model systems such as Lennard-Jonesium (LJ).

The various C++ and Fortran 90 programs used in this
paper (for computations and visualization) are available
upon request to the authors.

We thank F. Calvo for fruitful suggestions, as well as S. Maillet,
M. Buard and C. Rödl for developing prototype LJ implemen-
tations of the methods.
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